M.S. Thesis

M.S. Thesis

Emre Mutlu, Image-Based Malware Family Classification with Deep Learning and A New Dataset

This thesis aims to make experimental studies on malware family classification using deep learning algorithms. A new dataset called MamMalware which is publicly available and has 450K labeled malware was created within this study. Samples in dataset were translated into gray-scale image files, and the opcode sequences were also extracted. Image files and opcode sequences were used as input. Then 2 and 3 layered Convolutional Neural Networks (CNN) experiments were applied on MamMalware dataset. In addition, experiments using the transfer learning methods with ResNet152 and VGG19 pretrained models were conducted. As a result, the transfer learning models obtained the best results with 94% test accuracy.

Date: 17.05.2024 / 11:00 Place: A-212

English

Ali Eren Çetintaş, Meaning, Referentiality and Distribution: A Computational Investigation of Markers in German Compounding

Compounding is one of the known ways of word formation. It is also a productive way of word formation in German (Neef, 2009). Compounding in German makes use of some markers, mostly called linking elements, between the constituents, and this phenomenon is highly common. Whether these markers have any meaning or what primary functions they have are seemingly highly controversial. In this study, we suggest that the close relation between meaning and reference on the one hand and categorization on the other can be explored computationally in distributional properties of these markers which are difficult to identify analytically.

Date: 22.04.2024 / 09:00 Place: B-116

English

Seda Demirel, A Computational Study on Accusativity and Ergativity

This study investigates the potential outcomes when children are exposed to hypothetical English, i.e. ergative English rather than accusative English, in the language acquisition process by using a child-directed speech data set. Based on the data set, English grammar is constructed with syntactic and semantic structures. Subsequently, some parts are modified for the hypothetical English. Following this, a model is trained to generate sentences with their corresponding syntactic and semantic structures. After the training, a comparative analysis is conducted to determine the predominant category—accusative or ergative—in children's language acquisition.

Date: 22.04.2024 Place: B-116

English

Emre Karabıyık, A Broadcast Model of Spread of Digital Music Composition among Artificial Audience

This thesis delves into a fresh approach within the domain of digital music composition, offering an extensive model that replicates the complex social interactions among composers, broadcasters, and synthetic audiences. Utilizing sophisticated machine learning techniques, the research examines the development of compositions within a dynamic environment where composers iteratively adjust their styles in response to feedback from artificial audiences.

Date: 22.04.2024 / 10:00 Place: B-116

English

İbrahim Ethem Deveci, Transformer Models for Translating Natural Language Sentences into Formal Logical Expressions

Translating natural language sentences into logical expressions has been challenging due to contextual information and the variational complexity of sentences. In recent years, a new deep learning architecture, namely the Transformer architecture, has provided new ways to handle what was hard or seemed impossible in natural language processing tasks. The Transformer architecture and language models that are based on it revolutionized the artificial intelligence field of research and changed how we approach natural language processing tasks. In this thesis, we conduct experiments to see whether successful results can be achieved using Transformer models in translating sentences into first-order logic expressions.

Date: 17.04.2024 / 09:30 Place: B-116

English

Barış Fındık, Using Topological Features of Microservice Call Graphs to Predict the Response Time Variation

Microservices are increasingly gaining popularity in software design. It is essential for microservice architectures to have low response time variation to design testable and predictable systems. In this study, the aim is to predict the response time variation of microservice call graphs by using their topological features. Following the prediction processes with machine learning models, feature explanations methods are used to investigate which topological features are influential in the machine learning models' outputs regarding response time variation and how these features influence model outputs.

Date: 19.01.2024 / 09:00 Place: A-212

English

Ali Eren Çetintaş, Meaning, Referentiality and Distribution: A Computational Investigation of Markers in German Compounding

Compounding is one of the known ways of word formation. It is also a productive way of word-formation in German (Neef, 2009). Compounding in German makes use of some markers, mostly called linking elements, between the constituents, and this phenomenon is highly common. Whether these markers have any meaning or what primary functions they have are seemingly highly controversial. In this study, we suggest that the close relation between meaning and reference on the one hand and categorization on the other can be explored computationally in distributional properties of these markers which are difficult to identify analytically.

Date: 22.01.2024 / 14:00 Place: A-212

English

Seda Demirel, A Computational Study on Accusativity and Ergativity

This study aims to investigate the potential outcomes when children are exposed to a hypothetical English, i.e. ergative English, rather than accusative English in the language acquisition process by using a child-directed speech data set. Based on the data set, the English grammar is constructed with both syntactic and semantic structures. Subsequently, some parts are modified for the hypothetical English. Following this, a model is trained to generate sentences with their corresponding syntactic and semantic structures. After the training process, a comparative analysis is conducted to determine the predominant category—accusative or ergative—in the acquisition of language by children.

Date: 22.01.2024 Place: A-212

English

Hasan Can Öztürk, Global Level Discourse Structures in Motivational Speeches: A Computational Analysis of Turkish TEDx Talks

This study investigates the global discourse organization of Turkish TEDx talks. 70 TEDx Talks in Turkish with, reliable human-generated transcriptions were chosen to be annotated. These were collected as subtitle files and manually annotated to map out significant discourse segments. For every talk, a number of features such as the number of total words, specific transition words, duration (second-wise), speed, average embedding and the ending percentile of each sentence were used for training Machine Learning (ML) models. The results indicate that the transitions between motivational discourse segments can be predicted with an F1-score of 0.78.

Date: 22.01.2024 / 13:00 Place: B-116

English

İbrahim Ethem Deveci, Transformer Models for Translating Natural Language Sentences into Formal Logical Expressions

Translating natural language sentences into logical expressions has been a challenging task due to contextual information and the variational complexity of sentences. In recent years, a new deep learning architecture, namely the Transformer architecture, has been providing new ways to handle what was hard or seemed impossible in natural language processing tasks. The Transformer architecture and language models that are based on it revolutionized the artificial intelligence field of research and changed how we approach natural language processing tasks. In this thesis, we conduct experiments to see whether successful results can be achieved using Transformer models in translating sentences into first-order logic expressions.

Date: 23.01.2024 / 11:00 Place: B-116

English

Pages

Subscribe to RSS - M.S. Thesis