Doktora Adayı: Ali Mert Ertuğrul
EABD: Bilişim Sistemleri
Tarih: 20.11.2019 15:30
Yer: Konferans Salonu 1
Özet: Bireysel etkinlikler ve toplumsal olaylar (örneğin göçler, sosyal hareketler gibi) arasındaki ilişkiler, çeşitli sosyal, zamansal ve mekansal faktörler nedeniyle karmaşıktır. Bu tür ilişkileri, sokak protestoları ve opioid krizleri gibi çeşitli toplumsal olaylar bağlamında anlamak ve bu olayları tahmin etmek, kamu politikaları ve yetkililerin karar vermelerini desteklemede önemlidir. Bu tezde, (i) toplumsal olayları öngörmek ve (ii) toplumsal olaylar ile onların sosyal ve coğrafi bağlamları arasındaki ilişkileri incelemeye yardımcı olmak için yeni, uzay-zamansal, derin öğrenme ağları önerilmektedir. Önerilen modeller, yeni bir dikkat çeken ağ tasarımı ile yerel (bir konumdan gözlenen) ve küresel (tüm konumlardan gözlenen) faaliyetler arasındaki karmaşık etkileşimleri modellemektedir. Bu modeller, gelecekteki toplumsal olayların oluşumunu öngörebilir ve hangi özniteliklerin, hangi yerlerden ve olay tahminine nasıl katkıda bulunduklarını yorumlamaya izin verirler. Bu tez kapsamında, önerilen ağları değerlendirmek için, toplumsal hareketler ve opioid doz aşımı olmak üzere iki farklı popülasyon düzeyinde toplumsal olayda, çoklu veri setleri üzerinde kapsamlı deneyler yapılmıştır. Sonuçlar, önerilen modellerin karşılaştırılan yöntemlerden daha iyi tahmin performansı sağladığını göstermektedir. Ayrıca, önerilen modeller (i) hangi yerel ve küresel faaliyet özniteliklerin daha öngörücü olduğu, (ii) hangi konumların daha belirgin katkıları olduğu ve (iii) bu konumların daha sonraki olayları tahmin etmeye nasıl katkıda bulunduğu hakkında anlamlı yorumlar sağlamaktadır.