Utku Can Kunter, A Bayesian Model of Turkish Derivational Morphology
Building on an extensive review of the psycholinguistics literature and Turkish Derivational Morphology (DM), we propose a novel structure for representing DM in three hierarchical layers: segmentation, lexical selection and derivation. This proposal involves laying a conventionalized structure over the traditional morphological structure of DM. We develop a computational model of morphology processing based on this structure using Bayesian Belief Networks (BBN). We present an algorithmic implementation for this model that learns and accurately represents new lexical items, recognizes affixes and tracks the salience of each item probabilistically. We carry out trials on this model with realistic observation lists and observe that model predictions are in line with the findings in studies in psycholinguistics.
Date: 21.07.2023 / 11:30 Place: A-212